Towering Phenomena for the Yamabe Equation on Symmetric Manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strichartz estimates for the wave equation on Riemannian symmetric manifolds

We prove Strichartz type estimates for solutions of the homogeneous wave equation on Riemannian symmetric spaces. Our results generalize those of Ginibre and Velo in [7].

متن کامل

Positive Mass Theorem for the Yamabe Problem on Spin Manifolds

Let (M, g) be a compact connected spin manifold of dimension n ≥ 3 whose Yamabe invariant is positive. We assume that (M, g) is locally conformally flat or that n ∈ {3, 4, 5}. According to a positive mass theorem by Schoen and Yau the constant term in the asymptotic development of the Green’s function of the conformal Laplacian is positive if (M, g) is not conformally equivalent to the sphere. ...

متن کامل

On the Yamabe Equation with Rough Potentials

We study the existence of non–trivial solutions to the Yamabe equation: −∆u+ a(x) = μu|u| 4 n−2 μ > 0, x ∈ Ω ⊂ R with n ≥ 4, u(x) = 0 on ∂Ω under weak regularity assumptions on the potential a(x). More precisely in dimension n ≥ 5 we assume that: (1) a(x) belongs to the Lorentz space L n 2 (Ω) for some 1 ≤ d < ∞, (2) a(x) ≤ M < ∞ a.e. x ∈ Ω, (3) the set {x ∈ Ω|a(x) < 0} has positive measure, (4...

متن کامل

On Lorentzian two-Symmetric Manifolds of Dimension-fou‎r

&lrm;We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property&lrm;. &lrm;We then consider Einstein-like metrics&lrm;, &lrm;Ricci solitons and homogeneity over these spaces&lrm;&lrm;.

متن کامل

The conformal Yamabe constant of product manifolds

Let (V, g) and (W,h) be compact Riemannian manifolds of dimension at least 3. We derive a lower bound for the conformal Yamabe constant of the product manifold (V × W, g + h) in terms of the conformal Yamabe constants of (V, g) and (W,h).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Potential Analysis

سال: 2016

ISSN: 0926-2601,1572-929X

DOI: 10.1007/s11118-016-9608-4